KINETIX 5100
QUICK START UP GUIDE
คำนำ

หนังสือหรือคู่มือเล่มนี้จัดทำขึ้นเพื่อให้ความรู้เกี่ยวกับการใช้งานเซอร์โวมอเตอร์ (Servo motor) ยี่ห้อ Kinetix 5100 ของ Allen-Bradley เหมาะ
สำหรับผู้เริ่มต้นเรียนรู้การใช้งานเซอร์โวมอเตอร์สำหรับระบบควบคุมอัตโนมัติ โดยมี
เนื้อหาครอบคลุมจากพื้นฐานหลักการการทำงาน การใช้งานในรูปแบบต่างๆ เช่น PTO และ
Analog เป็นต้น

ทางบริษัทฯ หวังเป็นอย่างยิ่งว่าหนังสือเล่มนี้จะเป็นประโยชน์ต่อการสร้าง
พื้นฐานในการเรียนรู้และเรียนรู้ด้านข้อเสนอแนะ เพื่อจะได้นำมาปรับปรุงให้ดียิ่งขึ้น

บริษัท โซนิค ออโตแมชั่น จำกัด
พ.ศ. 2563

บริษัท โซนิค ออโตแมชั่น จำกัด โทรศัพท์ 0-2835-3933 โทรสาร 0-2835-3935
เว็บไซต์ www.sonicautomation.co.th
สารบัญ

หน้าชั่ว หน้า

บทที่ 1 Off-Line Startup 1

บทที่ 2 การควบคุมเครื่องโรตารี่ PTO 5

บทที่ 3 Off-Line Startup 10

บทที่ 4 การควบคุมเครื่องโรตารี่ PTO 15

บทที่ 5 การควบคุมแบบ Torque Control Mode 27

บทที่ 6 การควบคุมแบบ PR-Position Register Mode(Register input) 32

อ่านเพิ่มเติมในหน้าสุดท้าย
บทที่ 1 หลักการทำงานเบื้องต้น

ปัจจุบันเซอร์โวโมเตอร์เริ่มเข้ามามีบทบาทในการอุตสาหกรรมมากขึ้น และมีการนำเครื่องจักรกลไปแทนแรงงานมากขึ้นเพื่อลดค่าต้นทุน เซอร์โวโมเตอร์มีบทบาทสำคัญในการจัดการเพื่อช่วยให้ประสิทธิภาพในการผลิตดียิ่งขึ้น จุดเด่นของการนำเอาเซอร์โวโมเตอร์มาใช้คือ ความเร็วและความแม่นยำในการทำงาน เมื่อมีอินพุตของผู้ใช้งานจะทำให้เซอร์โวโมเตอร์ทำงานพร้อมที่จะเริ่มต้น

1.1 โครงสร้างของเซอร์โวโมเตอร์

เซอร์โวโมเตอร์นั้นจะถูกออกแบบโดยสามารถแบ่งได้เป็นสองส่วน ที่จะนำมาแต่งเซอร์โวโมเตอร์ได้ คือ DC servo motor, AC servo motor ซึ่งปัจจุบัน AC servo motor เป็นที่นิยมในการทำกันอย่างกว้างขวางมากกว่า

จากรูปที่ 1.1 แสดงโครงสร้างของเซอร์โวโมเตอร์จะมีเซอร์โคปเพอบอยงคลัด และเพอร์เฟอร์เพล็ตทำการ ดังนั้น

ความถี่ที่ซ้ายของเซอร์โวโมเตอร์สามารถกำหนดได้ตามดีกรี ที่ใช้ในการใช้งาน ซึ่งมีประโยชน์อีกอย่างหนึ่ง คือเซอร์โวโมเตอร์แบบ DC Brushless สามารถใช้ได้ในขั้นตอนที่มีความถี่ที่สูง

รูปที่ 1.1 แสดงโครงสร้างภายในของเซอร์โวโมเตอร์

1.2 ประเภทของอินโคเดเตอร์

อินโคเดเตอร์ใช้ในการทำงานของเซอร์โวโมเตอร์ที่มีการใช้งานอินโคเดเตอร์ที่มี 2 ประเภท

- อินโคเดเตอร์แบบเจาะจง (Increment Encoder)
- อินโคเดเตอร์แบบสัมภาษณ์ (Absolute Encoder)
1.2.1 เอ็นโคเดอร์แบบ Incremental (Incremental rotary encoder)
หลักการพื้นฐานของเรื่องเป็นเอ็นโคเดอร์แบบ Incremental จะใช้สัญญาณที่ส่งมาจาก Lighting diode ผ่านไปยัง rotation disc ที่ติดตั้งอยู่บนแกนเพลา โดยมี photo diode เบ็ญทัวร์บังแสง แสงจะผ่านรุบบน rotation disc ตามตำแหน่งของก้านเพลา ทำให้เกิดสัญญาณไฟฟ้าออกมาจาก photo diode เนื่องจากก้านของ A และ B บน fixed disc จะต่างกันอยู่ 90 องศา ดังนั้น สัญญาณเอาจากพุ่งทางไฟฟ้าจะได้รูปคลื่นที่ออกมาต่างกันอยู่ 90 องศา ส่วนของ Z บน fixed disc จะมีเพียงเรียวกันเท่านั้น

รูปที่ 1.2 เอ็นโคเดอร์แบบ Increment

เราจะสามารถที่จะรับรู้ได้ว่ามุมที่หมุนไปในทิศทางใด ด้วยการตรวจสอบสัญญาณของkses A และkses B ว่าสัญญาณใดมากก่อนกัน ซึ่งสามารถทราบว่าเรื่องของจักรกลที่หมุนได้จะท้านั้นจะทำงานอย่างไรการอ่านสัญญาณของkses A และkses B เอ็นโคเดอร์นี้มีโครงสร้างที่ไม่ซับซ้อน และมีจำนวนของสายสัญญาณเพียง 3 เส้นเท่านั้น แต่ในขณะที่วิธีการแล้วความล่าช้าคงไม่ถูกจำกับ จะต้องใช้วิธี counter ช่วยเก็บเวลา โดยปกติแล้วเครื่องจักรที่ใช้งานเอ็นโคเดอร์ประเภทนี้จะต้องการให้ Home Position ตอนเริ่มเปิดเครื่องทุกครั้งเพื่อด้านคำาของ Encoder ที่อยู่ในเครื่อง

1.2.2 เอ็นโคเดอร์แบบ Absolute (Absolute rotary encoder)
จะเป็นเอ็นโคเดอร์แบบอ่านค่าสัญญานิ่ง ซึ่งมีการบันทึกข้อมูลที่มุมที่หมุนที่ไม่เกิน 1 รอบ โดยทั่วไป absolute encoder จะมีวิธีการพุ่งเดิมให้เลือกใช้ใน gray code, binary หรือ BCD code

รูปที่ 1.3 เอ็นโคเดอร์แบบ Absolute
1.3 บล็อกโดดเดอร์ของเซอร์ไพร์ติฟิ

บล็อกโดดเดอร์ของเซอร์ไพร์ติฟิจะชี้แจงอยู่ในที่นี้รายละเอียดอย่างเช่นเซอร์ไพร์ติฟิที่ทำงานด้วยอินพุต Pulse การควบคุมด้านในจะประกอบไปด้วยส่วน Command pulse ซึ่งอาจจะเป็น PLC หรือ Microcontroller ก็ได้ สำนักนี้จะทำงานที่ส่างกลับป้อนเข้ามาที่ชุดไพร์ติฟิ โดยสัญญาณพิสูจน์ที่ส่งเข้ามา(Command pulse) จะหมายถึงระยะทางที่ต้องการให้ออเตอร์เคลื่อนที่ไป ตัวอย่างเช่น ชุดไพร์ติฟิและออเตอร์ถูกตั้งค่าที่มีค่าเท่ากัน 1 รอบ เมื่อได้รับ Pulse 1,000 ลูก ถ้า PLC ส่ง Pulse ให้กับชุดไพร์ติฟิลูก 500 ลูก จะทำให้ออเตอร์เคลื่อนที่รอบ

ภาคแรกของชุดไพร์ติฟิคือ Deviation counter หรือ Error counter ส่วนนี้จะทำการบวกที่รับสัญญาณ Pulse ที่ออกมาจาก Oscillator (ซึ่งอาจเป็น PLC) มาบวก สัญญาณป้อนกลับจาก Encoder(E) ผลต่างที่ได้จะถูกส่งไปยัง D/A conversion เพื่อแปลงค่าความแตกต่างออกไปเป็นสัญญาณเป็นสัญญาณ ส่งไปยังสำขัญป้อมยญาณ (amplifier) เพื่อขับเคลื่อนออเตอร์ต่อไป

รูปที่ 1.4 บล็อกโดดเดอร์แสดงการทำงานของเซอร์ไพร์ติฟิ

1.4 ข้อพิจารณาในการเลือกขนาดเซอร์ไพร์ติฟิ

การเลือกขนาดของเซอร์ไพร์ติฟินี้มีข้อพิจารณาหลายอย่าง เช่น ประเภทอินพุต ประเภทสัญญาณควบคุม (Analog หรือ Pulse) ความเร็วสูงสุด ผลต่างเดี่ยวเกี่ยวกับออเตอร์ที่เลือกนั้นสามารถขับไฟลักได้ตามต้องการหรือไม่ อย่างไรสามารถพิจารณาได้ดังต่อไปนี้
1.4.1 ความเนื้อของโหลด (Load Inertia)
ความเนื้อของเหล็กความสามารถของกระตุ้นในการด้านการเคลื่อนที่ โดยปกติวัสดุที่มีสูงน้ำหนักมากจะมีความเนื้อที่สูงในการคิดคำนวณความขยันของมอเตอร์จะต้องพิจารณาคำว่าความเนื้อของมอเตอร์จะต้องสามารถเข้าใจคำว่าความเนื้อของโหลดได้ โดยเป็นไปตามความสัมพันธ์

\[
\frac{\text{Load Inertia}}{\text{Motor Rotor Inertia}} \leq \text{Inertia Ratio}
\]

Load Inertia = เป็นความเนื้อของโหลดที่ต้องการ
Motor Rotor Inertia = ความเนื้อของโรเตอร์
Inertia Ratio = อัตราส่วนความสามารถของกระตุ้นของโรเตอร์

1.4.2 แรงบิดใช้งาน (Effective Torque)
แรงบิดใช้งาน เป็นแรงบิดที่เราต้องการใช้งานในขณะซับโหลดในสมการกลาด ซึ่งโดยปกติ แรงบิดนี้จะน้อยกว่าแรงบิดขั้วออกด้าน โดยการเลือกขนาดมอเตอร์จะต้องพิจารณาแรงบิดใช้งานนี้ด้วยความสัมพันธ์ด้านล่าง

\[
\text{Effective Torque} \leq \text{Torque of Motor}^{0.8}
\]

Torque of Motor = มาจากแรงบิดของมอเตอร์ที่หัวได้โดยอ้างอิงจาก Data sheet

1.4.3 แรงบิดชั้วขณะสูงสุด (Instantaneous maximum torque)
ขณะสูงสุดเริ่มหมุนด้านล่าง ซึ่งเวลาจะทำให้เกิดแรงบิดขั้วสูงเร็วขึ้น แรงบิดชั้วออกด้าน จะทำให้มอเตอร์นั้นกิน ก๊าซได้มากกว่า โดยการคิดคำนวณจะต้องพิจารณาตามความสัมพันธ์ ที่แสดงด้านล่าง

\[
\text{Instantaneous maximum torque} \leq \text{Instantaneous maximum torque of Motor}^{0.8}
\]

Instantaneous maximum torque of motor อ่านได้จาก Data sheet ของมอเตอร์รุ่นนั้นๆ

1.5 Electronic Gear

ถ้าสิ่งนี้จะทำให้เราได้ความรู้จากโปรแกรมในการดัดแปลงใช้งานเซอร์โพรเมชันคือ Electronics gear ซึ่งคือคำงบ่งที่ตั้งไปภายในตัวเครื่องซึ่งจะนำไปใช้ด้วยกับ Command pulses ที่ส่งมาจากตัว Controller เมื่อสูงแล้วจะส่งเข้าในส่วนของ Deviation Counter และจะได้คำบ่งที่จำแนกพิสัยที่ส่งไปยังภาคขับเคลื่อนเซอร์โพรเมชันรีซิคที่หนึ่ง ซึ่งคำ Electronics gear หรือ gear ratio นี้ใช้สำหรับบังคับระดับคำบ่งที่ให้กระตุ้นสิ่งที่อยู่ออกแบบโปรแกรมต่อการ
บทที่ 2 แนะนำเซอร์โอโตฟิชี Kinetix 5100

ในบทนี้เราจะแนะนำเซอร์โอโตฟิชี Kinetix 5100 และเซอร์โอโตมอเตอร์รุ่น TLP ซึ่งเหมาะสมสำหรับผู้เริ่มต้นใช้งานและผู้ที่มีความเข้าใจพื้นฐานควบคุมเซอร์โอโตมอเตอร์ เพราะ Kinetix 5100 ใช้งานอย่างถูกต้องไม่ซับซ้อน นอกจากนี้ยังสามารถใช้กับ PLC หรือคอนโทรลเลอร์อื่น ๆ ได้ (กรณีควบคุมแบบ PTO และ Analog)

2.1 รูปแบบการควบคุม Kinetix 5100

Kinetix 5100 ออกแบบให้สามารถทำงานแบบ Standalone ได้ ซึ่งสามารถทำงานได้ด้วยตัวเองหรือสั่งงานจากคอนโทรลเลอร์ภายนอกได้ Kinetix 5100 ใช้กับแหล่งจ่ายไฟ 1 เฟส หรือ 3 เฟสได้ แต่ 3 เฟสต้องเป็น 200 V เท่านั้น จะมีอินพุทดิจิตอล 10 จุด และอินพุทดิจิตอล 6 จุด ที่สามารถกำหนดฟังก์ชันการทำงานได้ รูปแบบการควบคุมที่ทำได้มีดังนี้

2.1.1 อินพุทดิจิตอล (Digital input) การควบคุมรูปแบบนี้จะใช้สัญญาณอินพุทดิจิตอล โดยสามารถตั้งค่าให้กับโครงสร้างเช่น Position และ Speed ได้ถึง 99 ค่า ทำให้สามารถควบคุมการเคลื่อนที่โดยไม่จำเป็นต้องใช้คอนโทรลเลอร์

2.1.2 อินพุทอนาล็อก (Analog input) เราสามารถควบคุม Speed หรือ Torque ของเซอร์โอโตมอเตอร์โดยใช้อินพุทอนาล็อกได้ ซึ่งสัญญาณอนาล็อกนี้สามารถจาก PLC หรืออุปกรณ์ใด ๆ ที่สามารถให้สัญญาณ -10 ถึง +10 VDC ได้

2.1.3 PTO (Pulse Train Output) Kinetix 5100 สามารถรับสัญญาณ Pulse จาก PLC หรือคอนโทรลเลอร์เพื่อควบคุมความเร็วและตำแหน่งได้

2.1.4 การสื่อสาร (Communication, EtherNet/IP) Kinetix 5100 มีพอร์ตสื่อสาร EtherNet/IP จำนวน 2 พอร์ต ทำให้ยังสามารถสื่อสารได้แต่ต้องใช้กับ PLC รุ่น CompactLogix ซึ่งไป รองรับเครื่องที่ DLR และ Linear ได้

2.2 องค์ประกอบต่าง ๆ ของ Kinetix 5100

รูปที่ 2.1 แสดงองค์ประกอบของ Kinetix 5100
จากรูปที่ 2.1 องค์ประกอบที่สำคัญของ Kinetix 5100 มีดังนี้

1. Servo Drive
2. Servo Motor
3. Terminal expansion rack (2198-TBIO)
4. Motor power cable
5. Feedback (encoder) cable

ส่วนอุปกรณ์อื่นๆ ปิ้งยังเป็นอุปกรณ์เสริม เช่น Shunt resistor ใช้สำหรับระบบหลักที่มาจากการเบรก เป็นต้น

2.3 รายชื่ออุปกรณ์ของ Kinetix 5100

รูปที่ 2.2 แสดงตำแหน่งและรายชื่ออุปกรณ์ต่างๆ ของโพรติบัล 400 w รุ่น2198-E1004-ERS

หมายเหตุ

รายละเอียดส่วนอุปกรณ์กับอุปกรณ์เสริมในรูปที่ 2.2 ต่อไปนี้:

- **Item 1** Status display
- **Item 2** Navigation push buttons
- **Item 3** Module, Network, and Charge status indicators
- **Item 4** Mini USB connector
- **Item 5** Ethernet (PORT1) RJ45 connector
- **Item 6** Ethernet (PORT2) RJ45 connector
- **Item 7** I/O signal connector
- **Item 8** Auxiliary feedback (AUX) connector
- **Item 9** Motor cable ground plate
- **Item 10** Safe torque-off (STO) connector
- **Item 11** Mains input power connector
- **Item 12** Control power input (L1C and L2C) connections
 - RESERVED (P1, P2, and negative DC-bus) not-used connections
- **Item 13** Motor feedback (MFR) connector
- **Item 14** Motor power output terminals
- **Item 15** Shunt resistor terminals
2.4 ข้อมูลสัญญาณ Power และ Control

รูปที่ 2.3 แสดงรายการของอุปกรณ์ต่างๆ เพื่อใช้สำหรับการตั้งค่าจ่ายไฟและตัวจ่ายรถยนต์

ข้อมูลรีเลย์ Kinetix 5100 สามารถใช้กับไฟ 3 เฟลที่ต่อสมบูรณ์ 200 V เท่านั้น ถ้าใช้กับไฟ 3 เฟลที่ 380 V จะทำให้เครื่องเสียหาย

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>AC power in – L1 phase</td>
</tr>
<tr>
<td>L2</td>
<td>AC power in – L2 phase</td>
</tr>
<tr>
<td>L3</td>
<td>AC power in – L3 phase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1C</td>
<td>Control AC power in – L1C phase</td>
</tr>
<tr>
<td>L2C</td>
<td>Control AC power in – L2C phase</td>
</tr>
<tr>
<td>P1</td>
<td>Reserved (not used) (1)</td>
</tr>
<tr>
<td>P2</td>
<td>Reserved (not used)</td>
</tr>
<tr>
<td>DC−</td>
<td>Negative DC bus</td>
</tr>
</tbody>
</table>

(1) P1 and P2 jumper is applied (default) at the factory. Do not remove jumper.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC+</td>
<td>Positive DC bus</td>
</tr>
<tr>
<td>ISH</td>
<td>Internal shunt connection (3) (applies to only 2190-E1004-ERS, 2190-E1007-ERS, 2190-E1015-ERS)</td>
</tr>
<tr>
<td>FSH</td>
<td>External shunt connection (applies to all drives)</td>
</tr>
</tbody>
</table>

(1) Internal shunt, keep jumper applied (default). Remove jumper and connect external shunt between DC+ and ISH.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Motor power out – U phase</td>
</tr>
<tr>
<td>V</td>
<td>Motor power out – V phase</td>
</tr>
<tr>
<td>W</td>
<td>Motor power out – W phase</td>
</tr>
</tbody>
</table>
รูปที่ 2.4 ขั้นมือแสดงวงจรการต่อกับสัญญาณอินพุทดิจิตอล ซึ่งวงจรอินพุทของ Kinetix 5100 เป็น Opto-couple ทำให้สามารถต่อคอมมอนเป็นบางเครื่องบล็อกได้ ล่าวนรูปที่ 2.4 ขั้นมือแสดงวงจรการต่อกับสัญญาณเอาท์พุทดิจิตอล

รูปที่ 2.5 ขั้นมือแสดงวงจรการต่อกับสัญญาณ Pulse Input แบบ Single-ended ส่วนขาวมีเป็นแบบ Line driver

รูปที่ 2.5 การต่อกับสัญญาณ Pulse Input แบบ Single-ended(ขาว) และ Line driver(ขาว)
ตารางข้างล่างนี้แสดงหมายเลขและชื่อของสัญญาณต่างๆบน Terminal expansion rack (2189-TB10)

<table>
<thead>
<tr>
<th>I/O Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUTPUT1+</td>
<td>Digital output 4+</td>
</tr>
<tr>
<td>2</td>
<td>OUTPUT1−</td>
<td>Digital output 4−</td>
</tr>
<tr>
<td>3</td>
<td>OUTPUT2+</td>
<td>Digital output 3+</td>
</tr>
<tr>
<td>4</td>
<td>OUTPUT2−</td>
<td>Digital output 3−</td>
</tr>
<tr>
<td>5</td>
<td>OUTPUT3+</td>
<td>Digital output 2+</td>
</tr>
<tr>
<td>6</td>
<td>OUTPUT3−</td>
<td>Digital output 2−</td>
</tr>
<tr>
<td>7</td>
<td>INPUT 1</td>
<td>Digital input 1</td>
</tr>
<tr>
<td>8</td>
<td>INPUT 2</td>
<td>Digital input 2</td>
</tr>
<tr>
<td>9</td>
<td>INPUT 4</td>
<td>Digital input 4</td>
</tr>
<tr>
<td>10</td>
<td>DCOM</td>
<td>Common for digital inputs, connected to +24 or 0V DC</td>
</tr>
<tr>
<td>11</td>
<td>AGND</td>
<td>Analog input signal ground</td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>Reserved (1)</td>
</tr>
<tr>
<td>13</td>
<td>AOUT2</td>
<td>Analog output 2</td>
</tr>
<tr>
<td>14</td>
<td>AOUT1</td>
<td>Analog output 1</td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>Reserved (1)</td>
</tr>
<tr>
<td>16</td>
<td>COMMAND1</td>
<td>Analog torque input</td>
</tr>
<tr>
<td>17</td>
<td>COMMAND2</td>
<td>Analog position or speed command input</td>
</tr>
<tr>
<td>18</td>
<td>AGND</td>
<td>Analog input signal ground</td>
</tr>
<tr>
<td>19</td>
<td>—</td>
<td>Reserved (1)</td>
</tr>
<tr>
<td>20</td>
<td>AMOUT+</td>
<td>Buffered encoder output Ch A+</td>
</tr>
<tr>
<td>21</td>
<td>AMOUT−</td>
<td>Buffered encoder output Ch A−</td>
</tr>
<tr>
<td>22</td>
<td>BMOUT+</td>
<td>Buffered encoder output Ch B+</td>
</tr>
<tr>
<td>23</td>
<td>BMOUT−</td>
<td>Buffered encoder output Ch B−</td>
</tr>
<tr>
<td>24</td>
<td>ZMOUT−</td>
<td>Buffered encoder output Ch Z−</td>
</tr>
<tr>
<td>25</td>
<td>ZMOUT+</td>
<td>Buffered encoder output Ch Z+</td>
</tr>
</tbody>
</table>

ตารางข้างล่างนี้แสดงหมายเลขและชื่อของสัญญาณต่างๆบน Terminal expansion rack (2189-TB10)

<table>
<thead>
<tr>
<th>I/O Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>OUTPUT4−</td>
<td>Digital output 4−</td>
</tr>
<tr>
<td>27</td>
<td>OUTPUT5−</td>
<td>Digital output 5−</td>
</tr>
<tr>
<td>28</td>
<td>OUTPUT5+</td>
<td>Digital output 5+</td>
</tr>
<tr>
<td>29</td>
<td>INPUT9</td>
<td>Digital input 9 (high speed)</td>
</tr>
<tr>
<td>30</td>
<td>INPUT8</td>
<td>Digital input 8</td>
</tr>
<tr>
<td>31</td>
<td>INPUT7</td>
<td>Digital input 7</td>
</tr>
<tr>
<td>32</td>
<td>INPUT6</td>
<td>Digital input 6</td>
</tr>
<tr>
<td>33</td>
<td>INPUT5</td>
<td>Digital input 5</td>
</tr>
<tr>
<td>34</td>
<td>INPUT3</td>
<td>Digital input 3</td>
</tr>
<tr>
<td>35</td>
<td>INPUT2</td>
<td>Digital input 2</td>
</tr>
<tr>
<td>36</td>
<td>INPUT1</td>
<td>Digital input 1</td>
</tr>
<tr>
<td>37</td>
<td>BPWR</td>
<td>External power input of BX+/BX− for single-end operation</td>
</tr>
<tr>
<td>38</td>
<td>RX−</td>
<td>Pulse input R-/DIR−/CCW−</td>
</tr>
<tr>
<td>39</td>
<td>RX+</td>
<td>Pulse input R+/DIR+/CCW+</td>
</tr>
<tr>
<td>40</td>
<td>INPUT10</td>
<td>Digital input 10 (high speed)</td>
</tr>
<tr>
<td>41</td>
<td>APWR</td>
<td>External power input of AX+/AX− for single-end operation</td>
</tr>
<tr>
<td>42</td>
<td>OUTPUT6−</td>
<td>Digital output 6−</td>
</tr>
<tr>
<td>43</td>
<td>AX−</td>
<td>Pulse input A−/Step−/CW−</td>
</tr>
<tr>
<td>44</td>
<td>AX+</td>
<td>Pulse input A+/Step+/CW+</td>
</tr>
<tr>
<td>45</td>
<td>AGND</td>
<td>Analog input signal ground</td>
</tr>
<tr>
<td>46</td>
<td>OUTPUT6+</td>
<td>Digital output 6+</td>
</tr>
<tr>
<td>47</td>
<td>—</td>
<td>Reserved (1)</td>
</tr>
<tr>
<td>48</td>
<td>OGMOUT</td>
<td>Buffered encoder output Ch Z open collector</td>
</tr>
<tr>
<td>49</td>
<td>—</td>
<td>Reserved (1)</td>
</tr>
<tr>
<td>50</td>
<td>ZMOUT+</td>
<td>Buffered encoder output Ch Z+</td>
</tr>
</tbody>
</table>

Drain wire
บทที่ 3 Off-Line Startup

ข้อควรระวังในการติดตั้งเครื่องรีโมทและเครื่องไฟฟ้า

- การเข้าสายไฟฟ้า, ตัวกันขนาดและความเครื่องเกินไป, ไว้ในที่ที่มีอุณหภูมิสูงเกินไปอาจทำให้สายการใช้งานเสื่อม.
- อย่าใช้ค้อนหรือเครื่องมือกระแทกที่เหล้าและอีเล็กโทรวัวพัดขึ้นเครื่องรีโมทเพราะจะทำให้ความร้อนเกิดขึ้นได้.

ต่อไปนี้เป็นการเริ่มต้นใช้งาน Kinetix5100 โดยไม่ได้ติดตั้งเครื่องรีโมท แต่ยังไม่ได้ตั้งจุดควบคุมโรคใดๆ ฉันเริ่ม E-Stop การทำงานนี้ยังคงไม่ได้รับการเริ่มต้นดอย่างถูกต้อง ที่ให้เกิดอันตรายต่อผู้ปฏิบัติงานและอุปกรณ์.

ทำการต้องทำการใช้กับโครงสร้างด้วยรูปแบบที่ดี หรือกับดักควบคุมเฉพาะแบบที่เกิดขึ้นได้ตามที่โอกาส รวมถึงการเพิ่มเติมเครื่องต่างๆที่มีในโครงสร้าง เช่น STO และ Shunt Resistor.

เมื่อทำให้เก็บโครงสร้างที่เกิดขึ้นในแต่ละแบบของโครงสร้างที่ E013 แสดงว่าไม่มีข้อผิดพลาด E-stop ให้ตรวจสอบว่า E-Stop อยู่ในตำแหน่งใดและต้องอยู่ถูกต้องหรือไม่.

ขั้นตอนการตั้งค่า Kinetix5100

1. ต่อสาย USB ระหว่างโครงสร้างกับคอมพิวเตอร์จากนั้นให้เปิดแหล่งจ่ายไฟ เปิดซอฟต์แวร์ KNX5100C โดยคลิกที่ 选择 Project และตำแหน่งที่เก็บไฟล์ตามต้องการ
2. เลือกพอร์ทสื่อสารที่ต้องการเชื่อมต่อกับคอมพิวเตอร์กับโครงสร้าง ในตัวอย่างนี้คือ Com4 จากนั้นคลิก Add

จากนั้นจะมีผลิตภัณฑ์รูปที่จะปรากฏ

3. ให้คลิกที่ เพื่อสื่อสารระหว่างคอมพิวเตอร์กับโครงสร้าง จากนั้นคลิกเพื่อเริ่มต้นการ Upload หรือ Download parameter ในกรณี Upload เนื่องจากโครงสร้างไม่ได้ถูกตั้งค่าใดๆ เราจะเลือกที่ Upload ที่ต่ำต้นของหน้าต่างการเชื่อมต่อด้านล่าง

เมื่อ Upload เสร็จสิ้นจะปรากฏหน้าต่างข้อความว่า Upload OK จากนั้นคลิก OK
4. คลิกที่ Motor Selection

5. จากนั้นจะปรากฏหน้าต่าง Motor Device Specification ให้ตรวจสอบว่าเลขที่แสดงเป็น Catalog Number เดียวกันกับแบบไดที่ส่งให้ลูกค้าหรือไม่ ถ้าไม่ตรงต้องตั้งค่าให้ถูกต้อง

6. จากนั้นให้เลือกคูณทางการควบคุมจะเป็น Position mode ซึ่งเป็นคำสำคัญจากโรงงาน

7. คลิกที่ Digital IO / Jog Cont แล้วคลิก OK

จะปรากฏหน้าต่าง Digital IO/ Jog control ดังรูปข้างล่างนี้ จากรูปนี้เราจะเห็นว่ามีสัญญาณอินพุต Reverse limit switch, Forward limit switch และ Emergency stop เข้ามา จึงทำให้เกิดผล

หมายเหตุ: เนื่องจากเป็นการทดสอบแบบไม่มีโทษให้ตรวจสอบความปลอดภัยก่อนการทดลองต่อไป
8. คลิกที่ Check box ของอินพุต Emergency stop และคลิก Yes

9. ถ้าต้องการใช้ฟังก์ชั่น On/Off เพื่อป้องกัน (Force) ให้สัญญาณเปลี่ยนแปลงโดยไม่สนใจสถานะจริงของสัญญาณ

10. ทำเช่นเดียวกับสัญญาณ Reverse limit switch และ Forward limit switch เพื่อทดสอบการทำงานของสัญญาณจากสิ่งที่คุณต้องการให้ On ไม่ได้ เพราะสัญญาณแบ่งออกกว่าได้ผลอยู่ในตำแหน่งเกินกว่าที่กำหนด

11. เลือกข้อด้วยการคลิกที่ Alarm reset ให้ On และ Off

12. เมื่อ Reset แล้วสามารถจะหายไปและปรากฏด้วยกายกร่าง Stop บนตัวเครื่อง จากนั้นให้ On อินพุท Servo On

ถ้าใครพูดถึงภาพ Servo On จะเรื่องด้านขึ้นที่เฉพาะของโมเดลหรือที่เรียกว่า Servo Lock เกิดขึ้น ให้ทดสอบทำการ Jog มองดูล waged การคลิกที่ลู่หน้า ข้าง หรือ จาก สามารถปรับ Speed ของการ Jog ได้ตามความเหมาะสม
ตารางข้างล่างแสดงค่าตั้งจากโรงงานของอินพุตดิจิตอล

<table>
<thead>
<tr>
<th>Digital INPUT</th>
<th>เลขที่โมดูล TBIO</th>
<th>คำสั่งจากโรงงาน</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT 1</td>
<td>9</td>
<td>Servo On</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 2</td>
<td>10</td>
<td>Pulse Clear</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 3</td>
<td>34</td>
<td>Register Torque Command Selection (1-4) Bit 0</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 4</td>
<td>8</td>
<td>Register Torque Command Selection (1-4) Bit 1</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 5</td>
<td>33</td>
<td>Alarm Reset</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 6</td>
<td>32</td>
<td>Reverse Limit Switch</td>
<td>N.C.</td>
</tr>
<tr>
<td>INPUT 7</td>
<td>31</td>
<td>Forward Limit Switch</td>
<td>N.C.</td>
</tr>
<tr>
<td>INPUT 8</td>
<td>30</td>
<td>Emergency Stop</td>
<td>N.C.</td>
</tr>
<tr>
<td>DCOM</td>
<td>11</td>
<td>เลขที่โมดูลคู่ของ Digital input</td>
<td>สามารถตั้งค่าได้</td>
</tr>
</tbody>
</table>

หมายเหตุ: N.O. = Normal Open, N.C. = Normal Closed
บทที่ 4 การควบคุมเข็มขัดFORCEโดยฟังก์ชัน PTO

โปรดอ้างอิงถึงการใช้งาน Kinetix5100 ร่วมกับ PLC ของ Allen-Bradley รุ่น Micro 850 ด้วยการใช้ Pulse Train Output (PTO) ซึ่ง Micro 850 จะให้สัญญาณเป็น Pulse ผ่านสัญญาณ Direction โดยปกติแล้ว Kinetix5100 สามารถรับรู้ PTO ได้หลายรูปแบบ เช่น AB phase pulse (4x), Pulse+Direction และ Clockwise & counterclockwise pulse.

ดังนั้นอุปกรณ์ที่นำมาควบคุม Kinetix5100 อาจจะเป็น PLC หลายๆ หรือคอนโทรลเลอร์ที่สามารถให้สัญญาณต่างๆ ได้ จึงทำให้ Kinetix5100 สามารถนำไปปรับระบบที่ใช้งานได้หลากหลาย.

องค์ประกอบของระบบ

ตัวอย่างกรณีที่นำมาใช้ประกอบความเข้าใจ คือ การนำเข็มขัดFORCEไปใช้กับ Ball screw เพื่อให้ Table เคลื่อนที่ได้แม่นยำและราบรื่นในช่วง Upper limit switch และ Lower limit switch ทำหน้าที่ป้องกันไม่ให้ Table เคลื่อนที่เกินจากระยะที่กำหนดไว้ ในระบบไม่ต้องคอนโทรลที่การเคลื่อนที่ล่างจะเป็นการขับเคลื่อนหลายขั้นตอนอาจไม่จำเป็นต้องใช้ Upper limit switch และ Lower limit switch.

นอกจากนี้ยังมี Home switch ทำหน้าที่ตรวจสอบเข็มขัดFORCE อยู่นั้นไปใช้งาน การคั่นหาตำแหน่ง Home จะช่วยให้ระบบมีความแข็งแรงเรียบร้อยเพื่อให้ทำงานในการเคลื่อนที่เป็นตัวแปรต่างๆ.

![Diagram](image-url)
การเดินสายไฟ

รูปข้างล่างนี้แสดงการเดินสายระหว่าง Micro850 กับ Kinetix5100 กรณีระบบที่ไม่ได้ใช้งาน Upper limit switch และ Lower limit switch ให้ข้อมูลการเดินสายในส่วนนี้
ขั้นตอนการตั้งค่า Kinetix5100

คุณสามารถอ้างอิงการใช้งานซอฟต์แวร์ KNX5100C เนื่องด้วยจากหัวข้อ Off-Line Startup

1. เชื่อมต่อกับคอมพิวเตอร์กับเครื่องตู้สาย USB จากนั้นให้เปิดแหล่งจ่ายไฟ
2. เรียกด้วยซอฟต์แวร์ KNX5100C
3. ตั้งชื่อ Project ตามที่ต้องการ ในตัวอย่างใช้ชื่อ MyProject

4. เลือกพอร์ทที่ต้องการสื่อสารแล้วคลิก Add

5. คลิก OFFLINE เพื่อการ On line
6. ให้เลือก Upload แล้วคลิก OK จนกว่าจะ Upload เสร็จแล้วคลิก OK

7. ให้เลือก Position mode
4. เลือก จากนั้นเลือก Pulse train และเลือก Pulse + Symbol จากนั้นคลิก Download

9. เลือก จากนั้นค่า Gear ratio ที่ 10,000 และคลิก Download
10. เลือก Limit ตั้งค่า Speed Limit ที่ 3000 RPM และคลิก Download

11. เลือก Parameter Editor ตั้งค่า DI1-DI8 ตามตารางข้างล่างนี้ จะเห็นว่ามีเพียง 3 อินพุตเท่านั้นที่ถูกตั้งค่าใช้งาน ส่วนอินพุตอื่นให้ตั้งค่าเป็น Disabled

ตารางแสดงความหมายของ Input ที่ตั้งค่าแต่ละตัว

- DI1: [0x01] Servo On
- DI2: [0x00] Disabled
- DI3: [0x00] Disabled
- DI4: [0x00] Disabled
- DI5: [0x02] Allen meter
- DI6: [0x00] Disabled (NC)
- DI7: [0x00] Disabled (NC)
- DI8: [0x21] Emergency stop (NC)
การตั้งค่าและเขียนโปรแกรม Micro850

1. เปิดซอฟต์แวร์ CCW เลือก New และสร้าง Project ชื่อมาว่าใหม่
2. เลือก Controller รุ่น 2080-LC50-24QBB และคลิก Add to project
3. ที่หน้า Micro850 ให้เลือก Motion จากนั้นคลิกขวาที่ New Axis และคลิก Add

4. จะปรากฏหน้า Motion control ขึ้นมา สามารถเปลี่ยนชื่อได้แต่ตั้งค่า Axis1 ให้คลิกที่ Axis1 เพื่อสู่หน้าต่อไปในการตั้งค่า โดยเริ่มต้นที่ General ให้เลือก Drive Enable Output เป็น IO_EM_DO_06 และ Drive Ready Input (หรือ Servo Ready จากโครง) เป็น IO_EM_DL_04
5. Click on Motor and Load at นี้ให้ตั้งค่า Position เป็น mm

Pulse per Revolution = **10000.0** (เราจะกำหนด Pulse จำนวน 10,000 เพื่อให้มอเตอร์หมุน 1 รอบ ซึ่ง Gear ration ของ Drive จะตั้งไว้ที่ 10,000 เท่ากัน)

Travel per Revolution = **10.0 mm** (หมุน 1 รอบ Table เคลื่อนที่ 10 มม. ซึ่งตรงกับค่า Ball screw)

Polarity = **Inverted** (ซึ่งผูกกับการเคลื่อนที่ของ Ball Screw ให้ตั้งตามเหมาะสม)

6. คลิกเลื่อน **Limits** เพื่อกำหนดค่าพุ่งของ **Upper hard limit** และ **Lower hard limit** (สรุต์ที่ใช้ควบคุม NC) ในกรณีที่ระบบไม่มีการใช้งาน Limit ทั้ง 2 นี้ให้คลิกเลื่อน **Upper hard limit** และ **Lower hard limit**

7. คลิกเลื่อน **Dynamics** เพื่อกำหนด Profile การทำงาน ให้ป้อนค่าต่างๆตามรูปข้างล่างนี้
8. คลิกเลิฟ Homing เพื่อกำหนด Profile ของการค้นหา Home การกำหนด Homing Direction ให้ดูว่าระบบที่เชื่อมการจะกำหนดในสิ่งต่างใด จากนั้นป้อนค่าที่ต่างๆตามต้องการ พร้อมทั้งเลือก Home Switch Input เป็น IO_EM_DI_02
9. เขียนโปรแกรมแสดงถึงการหมุน CCW ตามรูปตัวอย่างข้างล่างนี้
โปรแกรมแสดงต่อไปนี้

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>MC_MoveRelative1</th>
<th>MC_MoveRelative1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start1</td>
<td>EN</td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td>Accm.</td>
</tr>
<tr>
<td></td>
<td>Execute</td>
<td>Done.</td>
</tr>
<tr>
<td></td>
<td>FileDistanceInput</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File_Velocity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File_Acc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File_Dec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File_Jelt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BufferLoc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>MC_MoveAbsolute1</th>
<th>MC_MoveAbsolute1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start1</td>
<td>EN</td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td>Accm.</td>
</tr>
<tr>
<td></td>
<td>Execute</td>
<td>Done.</td>
</tr>
<tr>
<td></td>
<td>ABS1_DistanceInput</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABS1_Velocity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABS1_Acc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABS1_Dec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABS1_Jelt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BufferLoc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>EN</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN</td>
<td>EN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>EN</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN</td>
<td>EN</td>
</tr>
</tbody>
</table>
ทดสอบการทำงาน

1. ให้ On สัญญาณ PowerUpAxis (switch) เพื่อสั่งให้ MC_Power ทำงาน ถ้าทุกอย่างปกติสัญญาณ PowerDone จะมี ลอจิกเป็น True แล้วเอาทั้งหมด IO_EM.DO.06 จะ On เพื่อบ่งให้ ServoOn ที่ Kinetix5100 มีลอจิกเป็น True

2. ให้ On สัญญาณ SWHome เพื่อสั่งให้ MC_Home ทำงานเพื่อก้นหาตำแหน่ง Home
3. ทดลองการที่บ้าน MC_MoveRelative โดยการป้อนค่า (MoveRelative เป็นคำสั่งให้เมจิผลงจากตำแหน่งปัจจุบันไปยังระยะที่กำหนดใน Rel_Distance_Input)

\[
\text{Rel_Distance_Input} = 10.0 \text{ (หม_upgrade_10 mm ต่อลบตามที่กำหนดไว้ที่ Motor & Load)}
\]

\[
\text{Rel_Velocity} = 10.0 \quad \text{Rel_Acc} = 100.0 \quad \text{Rel_Dcc} = 100.0 \quad \text{Rel_Jerk} = 100.0
\]

1. ทดลองการที่บ้าน MC_MoveAbsolute โดยการป้อนค่า (MoveAbsolute เป็นคำสั่งให้เมจิผลงมาจากตำแหน่งปัจจุบันไปยังระยะที่กำหนดใน Rel_Distance_Input เมื่อเรียบร้อยกับ Home)

\[
\text{Rel_Distance_Input} = 10.0 \text{ (หม_upgrade_10 mm ต่อลบตามที่กำหนดไว้ที่ Motor & Load)}
\]

\[
\text{Rel_Velocity} = 10.0 \quad \text{Rel_Acc} = 100.0 \quad \text{Rel_Dcc} = 100.0 \quad \text{Rel_Jerk} = 100.0
\]
บทที่ 5 การควบคุมแบบ Torque Control Mode

ในบทนี้จะเป็นการดูอย่างการควบคุมแบบ Torque Control Mode โดยการใช้สัญญาณอนalog 0-10 V จากภายนอกซึ่งอาจเป็น PLC หรืออุปกรณ์ใดๆ ก็ได้ที่สามารถให้สัญญาณอนalog

การต้องจรรยา

รูปที่ 1 แสดงการต้องจรรยาควบคุม Kinetix5100 ซึ่งสามารถควบคุม Torque จากสัญญาณอนalog 0-10 V
รูปที่ 2 แสดงการต่อวงจรควบคุม Kinetix5100 โดยสามารถควบคุมจากอัญญาณสัญญาณ Torque bit 0 (Register Torque Command Selection Bit 0) และ Torque bit 1 (Register Torque Command Selection Bit 1) ซึ่งจะเป็น
tัวลักษณะ Command ของ Torque จะมาจากค่า Torque Register ดังนั้น เมื่อ 0,0 จะกำหนดให้ค่า Torque อ้างอิงจากอินพุทคอนโทรล แต่ถ้าเป็น 0,1 ค่า Torque จะอ้างอิงจากค่าใน Torque Register 1.
ตารางชี้แจงลำดับแสดงวงจรของ TBO ที่ต้องการตั้งค่า

<table>
<thead>
<tr>
<th>Digital INPUT</th>
<th>เทอร์มิ널ของ TBO</th>
<th>ค่าตั้งค่า</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT 1</td>
<td>9</td>
<td>Servo On</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 2</td>
<td>10</td>
<td>Speed limit</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 3</td>
<td>34</td>
<td>Register Torque Command Selection (1-4) Bit 0</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 4</td>
<td>8</td>
<td>Register Torque Command Selection (1-4) Bit 1</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 5</td>
<td>33</td>
<td>Alarm Reset</td>
<td>N.O.</td>
</tr>
<tr>
<td>INPUT 6</td>
<td>32</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>INPUT 7</td>
<td>31</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>INPUT 8</td>
<td>30</td>
<td>Emergency Stop</td>
<td>N.C.</td>
</tr>
<tr>
<td>DCOM</td>
<td>11</td>
<td>เทอร์มิ널คอมมิชั่นของ Digital input</td>
<td></td>
</tr>
</tbody>
</table>

ขั้นตอนการตั้งค่า Kinetix5100

1. เชื่อมต่อคอมพิวเตอร์กับ Kinetix5100 ด้วยสาย USB และเปิดแหล่งไฟฟ้า
2. เปิดซอฟต์แวร์ KNX5100C และ Online
3. ให้คลิก Drop-down แล้วเลือก Torque control mode ดังรูปข้างล่างนี้

4. กรณีต้องการตั้งค่า Torque จากอินพุทดิจิทัลให้ชื่อชี้แจงดังนี้ นั่นคือ torque จาก Torque Register ให้คลิกที่ Command source ป้อนค่าที่ torque register ตามที่ต้องการ
5. จากนั้นให้คลิกที่ Analog I/O ซึ่งก็จะปรากฏหน้าปัดให้สัญญาณ专项整治 10 V สร้าง Torque ที่ 100 % ถ้าไม่ต้องการเปลี่ยนแปลงสามารถข้ามขั้นตอนนี้ได้

6. คลิกที่ Limit เพื่อกำหนด Speed Limit เนื่องจาก Torque Control จะเน้นที่การสร้าง Torque ให้ได้ตามที่กำหนดโดยไม่สนใจถึงความเร็ว (Speed) จะเป็นเท่าใด ถ้าเราไม่ควบคุมได้มันอาจจะทำให้อุปกรณ์หมุนจนเกินความเร็วสูงสุดได้ซึ่งอาจทำให้เกิดอันตรายกับระบบ ในตัวอย่างนี้ตั้งที่ 100 RPM

7. คลิกที่ Parameter Editor > I/O ให้ตั้งค่าอินพุตติจฉัตรตามที่กำหนด
8. การที่ใช้งานแบบอินพุทเมนูกด ให้ On สัญญาณ ServoOn จากนั้นปรับสัญญาณ Analog เพื่อให้ได้ Torque ตามที่ต้องการ

9. การที่ใช้งานแบบอินพุทดิจิตอล ให้คลิกที่ Digital 10 / Jog Control จะปรากฏหน้าต่างแสดงข้อมูลของอินพุทดิจิตอลที่ตั้งไว้เพื่อตรวจสอบความถูกต้อง เราสามารถทดสอบการทำงานได้จากหน้าต่างนี้หรือจากอุปกรณ์อินพุทดิจิตอลที่ต่อที่ Kinetix 5100 ได้ จากรูปข้างล่างจะเห็นที่ Force ให้อินพุท DI1=On เป็นการกำหนดค่า Torque ให้เท่ากับ Torque register 1 (5%) และ DI2=On เพื่อให้ไถ่การทำงาน

<table>
<thead>
<tr>
<th>Digital Input (DI):[Rx01] T: Torque control mode</th>
<th>Status</th>
<th>Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1:[Rx01]Serve On</td>
<td>ON</td>
<td>On/Off</td>
</tr>
<tr>
<td>D2:[Rx16]Speed limit</td>
<td>OFF</td>
<td>On/Off</td>
</tr>
<tr>
<td>D3:[Rx17]Register Torque command selection (1 - 4) Bit0</td>
<td>OFF</td>
<td>On/Off</td>
</tr>
<tr>
<td>D4:[Rx18]Register Torque command selection (1 - 4) Bit1</td>
<td>OFF</td>
<td>On/Off</td>
</tr>
<tr>
<td>D5:[Rx19]Alarm reset</td>
<td>OFF</td>
<td>On/Off</td>
</tr>
<tr>
<td>D6:[Rx20]Disabled</td>
<td>OFF</td>
<td>On/Off</td>
</tr>
<tr>
<td>D7:[Rx21]Disabled (HC)</td>
<td>OFF</td>
<td>UNV/VT</td>
</tr>
<tr>
<td>D8:[Rx22]Emergency stop (HC)</td>
<td>OFF</td>
<td>UNV/VT</td>
</tr>
</tbody>
</table>
บทที่ 6 การควบคุมแบบ PR-Position Mode (Register input)

ในบทนี้จะเป็นการด้วยการควบคุมแบบ PR-Position Mode โดยการใช้สัญญาณอินพุทดิจิตอลเพื่อควบคุมตำแหน่ง การเคลื่อนที่ การควบคุมแบบนี้เหมาะสำหรับผู้ที่ไม่ต้องการเขียนโปรแกรม PLC ที่ซับซ้อนและวิธีการนี้จะสามารถถูกต้องได้โดยการเปลี่ยนแปลงการ เคลื่อนที่ ความเร็ว อัตราแรง ตำแหน่ง Register ในตัวโดยผ่านการควบคุมโปรแกรม PLC หรือคอนโทรลเลอร์ ประเภทอื่นเพื่อเลือก Register ที่ต้องการให้ทำงานเท่านั้น โดยที่จะมีเคลื่อนที่เป็นอิสระที่ต้องการ

องค์ประกอบของระบบ

ตัวอย่างงานที่นำมาใช้ประกอบความเข้าใจ คือ การนำเซอร์โวไวไฟฟ์และออกเวิร์กในที่ทำงานผ่านการเคลื่อนที่ ซึ่งลักษณะการเคลื่อนที่ในที่ทำงานของตัวอย่างที่กำหนดไว้ใน Register Position ที่มีระบบทันท่วง โดยการเคลื่อนที่ 1 ครั้งจะทำให้ข้อมูลใน

การเดินสายไฟ

32
การตั้งค่า Kinetix 5100

สามารถย้ายยิงการใช้งานของฟังก์ชัน KNX5100C เข้าทำกันจาก Off-Line Startup
1. คลิกเลือก PR เมื่ืต้องการควบคุมแบบ PR Position mode

2. คลิกเลือก E-gear Ratio ตั้งค่า Gear ratio = 100,000 แล้วคลิก Download

3. เลือก Limit ตั้งค่า Speed Limit ที่ 3000 RPM และคลิก Download
4. เลือก Parameter Editor และตั้งค่า I/O ตามข้อมูลข้างล่างนี้

5. คลิกเลือก PR Mode Editor จะปรากฏหน้าต่างให้ตั้งค่าการทำงาน เช่น Accel / Decel Time และ Internal Target Speed เป็นต้น ซึ่งทำให้สามารถกำหนดค่าต่างๆได้ง่ายขึ้นและนั้นจะนำไปใช้กับ Position Register ยกตัวอย่างเช่น เมื่อคลิก Internal Target Speed จะปรากฏหน้าต่างให้ตั้งค่า Speed ซึ่งตั้งได้ถึง 16 ค่า (POV00-POV15) และสามารถเปลี่ยนค่า rpm ที่ต้องการได้เลย ค่า Speed ต่างๆเหล่านี้จะถูกเรียงไปใต้ในขณะที่ตั้ง Position Register ในการทดลองนี้จะใช้ค่าดังจากโรงงาน

6. ต่อไปความการตั้งค่า Position Register ซึ่งในตัวอย่างนี้จะตั้งค่าเพียงค่าเดียวคือ PR#01 เมื่อคลิกที่ตำแหน่งนี้จะปรากฏหน้าต่าง Pr. Mode ซึ่งมาก ให้คลิกที่ Dropdown เพื่อเลือก TYPE
7. ให้เลือก Point-to-Point Command และ REL Relation Position จากนั้นป้อนค่า Position CMD DATA ที่ 100,000 ซึ่งจะตรงกับ Gear ratio ซึ่งตั้งไว้ที่ 100,000 เช่นกัน นับหมายความว่ามอเตอร์จะหมุน 1 รอบ

ทดสอบการทำงาน

วิธีที่ 1 ทดสอบโดยใช้อินพุตสติช็อก
1. ให้ On อินพุต DI1 เพื่อ On เซอร์โวโพร์ฟิล
2. ให้ On อินพุต DI3 เพื่อเลือก PR41
3. จากนั้นให้ On อินพุต DI2 เพื่อให้มอเตอร์หมุนตามระยะที่ตั้งไว้ ถ้าต้องการให้เคลื่อนที่ได้ต้องการให้ Off และ On อีกครั้ง

วิธีที่ 2 ทดสอบโดยใช้มุม Digital IO / Jog control
1. คลิก Digital IO / Jog Control
2. ให้ On อินพุต DI3 จากนั้นให้ On อินพุต DI1 เมื่อต้องการให้มอเตอร์หมุนให้ On อินพุต DI2